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1. ABSTRACT

Stepper motors have been used extensively in spacecraft 
mechanism and solar array drive applications.   High 
Inertia Filter Wheel applications can be challenging 
with relatively high moment of inertia and high-velocity 
filter position response requirements.   This paper will 
discuss the design implications and development efforts 
for a mechanism drive actuator used in geosynchronous 
weather and Earth-science instrumentation.    

2. KEY SYSTEM REQUIREMENTS

The customer required a common actuator for multiple 
proprietary applications. The actual numbers have been 
modified from the actual application, but the systematic 
process of analysis is being presented.   Several key 
system requirements for this application are:  

• (JL) Load Inertia: 0.5 kgm2

• (JF) Inertia Factor: ≤ 3.0
• (FL) Load Friction: 56 mNm, nominal
• (ωL) Velocity Under Load: ≥ 0.50 RPM.
• Positive Torque Margin per GSFC-STD-7000
• (ΔΘL) Step Resolution: ≤ 5 arc-minutes
• Output Position Knowledge Required
• Output Position and Sensor Repeatability: ≤ 3

Arc-Minutes
• Motor Winding and Output Position Sensor

Electrical Redundancy
• Actuator Height from Mounting Surface: ≤ 65

mm
• Operational Temperature -40º C to +65º C
• Actuator Mass: ≤ 1.0 kg
• Actuator Life: 1.25 x 108 steps
• Reliability of ≥ 0.997 for 1.25 x 108 steps

3. ANALYSIS OF TRANSMITTED TORQUES

The challenging overall system requirements led to 
several innovative and unique solutions for the 
application.  Perhaps one of the most demanding of 
these is the reliability and number of steps requirement. 
Even though the load friction is minimal, there is 
considerable transmitted torque through the gearbox to 
accelerate the load inertia.  We will assess the 
methodologies used in determination of transmitted 
torques, as well as several other key requirements.  

3.1 Calculation of Torque Margins 
The methodology of calculating Torque Margin per 
GSFC-STD-7000 is discussed in detail in Ref. [1], and 
not duplicated here.  The Torque Margin methodology 
presented in Ref. [1] results in a Margin of Safety 
(MoS) of 0.136 at CDR and 0.372 at ATP.  These 
numbers may sound low, compared to other margin 
techniques, but the NASA standard provides significant 
margin to the individual components of torque and 
requires a resultant positive (greater than zero) MoS. An 
implication of the NASA standard is that hardware is 
designed at CDR, but the performance required at ATP 
is lower than what the hardware was designed to meet.   
While it is tempting to think that more torque is always 
better, there are other implications of excessive torque 
margin to consider. Excessive torque margin will result 
in higher power consumption and increased pulse 
transients through the mechanical system. Ideally, 
systems should implement current limiting so that peak 
torques at the time of system integration can be set for 
actual measured levels.   Setting current limits at the 
integration phase also provides the benefit of verifying 
magnitudes of torques so the lowest power consumption 
can be realized while maintaining acceptable torque 
margins.   

3.2 Calculation of Load Acceleration Torques  
One of the often-overlooked implications of high torque 
margin in driving inertial loads is the acceleration 
torques at each step of the stepper motor.  These torque 
pulses can be significant and must be considered in the 
mechanical structural and life analysis.  For this 
application, the load inertia is coupled directly to the 
output shaft, supported by a separate bearing system.  
The load friction is extremely low, as defined in Key 
System Requirements. The driven load inertia, however, 
is relatively high at 0.50 kgm2.  Each step of the stepper 
motor will accelerate the load, and this will translate a 
reaction torque throughout the actuator.  The motor 
current is limited to maintain a maximum holding 
output torque of 35 Nm.   This translates to a torque at 
low pulse rate (TPPS-0) of 43 mNm at the motor.   Using 
the torque at low pulse rate for these calculations will 
provide the mean acceleration and torque during each 
step.  The Peak Torque and acceleration will be 41% 
higher than the mean calculated values.  

For applications that do not implement current limiting, 
nominal and maximum motor torque calculations should 

___________________________________________________________________ 
Proc. ‘ESMATS 2017’, Univ. of Hertfordshire, Hatfield, U.K., 20–22 September 2017 



 

be analyzed. That is, nominal voltage, resistance and 
temperature for the nominal case, and minimum 
temperature and resistance as well as maximum torque 
constant and voltage for the maximum case.   The 
engineer needs to make sure that they have structural 
and endurance margin at maximum conditions, but it is 
also of value to assess the nominal conditions to gage 
how conservative the analysis is.  Since torque margin 
requirements are calculated at the minimum conditional 
values, the maximum conditions may result in 
surprising results.  
 
The mean acceleration at the load (αL) is calculated in 
Eq. 1.  The mathematical proof of this equation is 
available by contacting the authors.   
 

αL =
(TPPS−0 −FM )(N ⋅ηG )−FL

JL + (JM ⋅N
2 ⋅ηG )

………..(1) 

 
Where: (Application Values) 

• αL = Mean Acceleration of the Load (To be 
calculated) 

• TPPS-0 = Torque at Low Pulse Rate at Motor (43 
mNm) 

• FM = Detent Plus Friction at the Motor (8.5 
mNm) 

• N= Gear Ratio (576:1) 
• FL = Load Friction (56 mNm) 
• JL = Load Inertia (0.50 kgm2) 
• JM = Motor Rotor Inertia (8.6E-07 kgm2) 
• ηG = Gearbox Efficiency (88%) 

 
When applying these calculations, the acceleration at 
the load at each pulse is 23.1 Rad/sec2. The Torque to 
Accelerate the Load  (TαL) is calculated by Eq. 2: 
 

 TαL = JL ⋅αL ………………….(2) 
 

When calculating the Mean Torque to Accelerate the 
load, we achieve a surprising 11.6 Nm.  This torque is 
actually transmitted through the gearbox at every pulse 
of the system. The Peak torque at each pulse is 16.3 
Nm.  High bandwidth torque transducers have 
empirically verified these numbers.  As a note, since the 
gearbox efficiency attenuates the acceleration at the 
output, it is most conservative to use 100% gearbox 
efficiency.  In this subject application, we actually 
verified total dynamic gearbox efficiency of 88% of the 
four-stage gearbox.  Additionally, the verified 
acceleration torque pulses at the load matched our 
analysis, verifying the dynamic gearbox efficiency via 
multiple methodologies.  
 
3.3 Calculation of Loaded Time and Mean Loaded 
Velocity 
Now that we have determined the peak-transmitted 

torque to the load, we must determine the time the unit 
is under load.   Stepper motors do not transmit torque 
between step pulses when the shaft is settled. As long as 
the inertia factor is reasonable (under 3.0) the overshoot 
and stabilization torques are also insignificant.   
Therefore, we are primarily interested in the time it 
takes to accelerate the load at each pulse (tαL). Which is 
estimated in Eq. 3.  
 

tαL =
2 ⋅ ΔΘL

αL

+τ e …………………(3)  

 
Where: (Application Values) 

• tαL = Time to Accelerate Load (To be calculated) 
• ΔΘL = Step Size at Load (9.1E-4 Radians) 
• αL = Acceleration at Load (23.1 Rad/sec2) 
• τe = Motor Electrical Time Constant (3.0E-04 

sec) 
 
This results in a time to accelerate the load at each pulse 
of tαL = 9.16 E-03 seconds.  Given the life requirement 
of 1.25E+08 steps, this translates in a Loaded-Lifetime 
requirement of about ΣtαL = 318 hours at 11.6 Nm.  
There are several offsetting secondary and tertiary 
components that affect the actual load characteristics 
and step kinematics, however, this analysis is 
considered conservative and appropriate.  System drive 
electronics, internal damping characteristics as well as 
backlash will have minor affects on the step kinematics.  
These system variables can be difficult to predict or 
quantify, and their affects are much less significant 
compared to the primary variables defined in Eqs. 1-3.   
 
Now that the torque and time components are 
established, we must determine the mean velocity when 
the mechanical energy is transferred. This calculation is 
presented in Eq. 4.  
 

ωL _Loaded =
ΔΘL

tαL
…………..……(4)  

 
Where: (Application Values) 

• ωL_Loaded = Mean Loaded Velocity (To be 
calculated) 

 
This analysis results in a Mean Loaded Velocity of 
ωL_Loaded = 0.099 Radians per second, or 0.104 RPM.   
The analyzed load acceleration torques (TαL), Mean 
Loaded Velocities, and Loaded Lifetime that must be 
used in the gearbox and bearing endurance and analysis.   
The most important factor that we are communicating 
here is that the torque and velocity that is transmitted 
through stepper motor actuators are typically 
significantly higher than the load friction and step-rate 
velocity requirements.  Increasing torque motorization 



 

margin will necessarily increase the torque transmitted 
through the gearbox, regardless of the magnitude of the 
load frictional components.    
 
Another key take-away is that the Loaded Lifetime can 
be orders of magnitude less than the operational time, 
since stepper motor actuators are not transmitting torque 
during idle and settled times between steps.   
Additionally, if you run through the numbers, you will 
see that lower gear ratios will reduce TαL at the actuator 
output.  Doing this will increase your inertia factor and 
increase the probability of unstable step performance, as 
described in Ref. [1].    
 
4. DEVELOPMENT OF INTEGRAL POSITION 
SENSOR  
 
The application requirements include integral output 
position feedback as well as limitations of the height 
and mass of the actuator.   Integrating repeatable and 
reliable position feedback is a highly desired option for 
mechanism applications.    Packaging limitations and 
sensor options can often be driving requirements in 
configurations.  Some heritage applications utilize anti-
backlash gearing to separate components.   This 
additional gearing and complexity can significantly 
decrease reliability while increasing cost and mass.  
Avior has addressed these concerns with an innovative 
line of OnAxis position transducers that integrate 
directly to the output shaft of the low speed gearbox.  
The customer preferred to use Brushless Resolvers for 
this application, although other sensor types are 
available.  The maximum height requirement of 65 mm 
necessitated a right angle gearbox for this application.  
The integral actuator is shown in Fig. 1. 
 

 
Figure 1 

 Actuator with Integral OnAxis Output Position Sensor  
 
With the incorporation of the OnAxis position sensor, 
the subject actuator eliminated many failure modes 
associated with anti-backlash designs.   Further, the 
variable reluctance configuration also eliminated the 
need for a rotary transformer, reducing the number of 
windings as well as the axial length.   A disadvantage of 
the variable reluctance configuration of the resolver is 

that the accuracy of the resolver itself is only on the 
order of two to three degrees, however, the repeatability 
was verified to be within the measured backlash of the 
gearbox of less than 3 arc-minutes.  Since the system 
had digital processing capabilities, a simple look-up-
table provided the required absolute position knowledge 
of the system.  The configuration of the actuator met the 
65 mm height and 1 kg mass requirements.  
 
5. RELIABILITY ANALYSIS  

There are many statistical approaches to calculate 
failure rates of components and systems. Many of which 
do not adequately assess the failure rates of electro-
mechanical systems such as the actuator in this 
application. It is also impractical to manufacture a 
statistically significant number of units to determine 
failure rates and probabilities.   The authors believe the 
approach presented herein is much more appropriate 
and statistically valid for mechanisms and components 
manufactured for the space industry.  
 
5.1 Reliability Block Diagram 
Fig. 2 breaks down the components of the actuator in a 
Reliability Block Diagram.   The motor may be driven 
through either the primary or redundant motor winding.  
The single-string gearbox components are typical for 
the industry, as differential gearing adds significant 
cost, mass and complexity.   The output position may be 
measured by either the primary or redundant sensor 
windings.  Reliability Block Diagrams may seem trivial, 
but it provides a graphic representation of the system 
configuration and aides in the determination of potential 
failure modes and their affects.  Also of note for this 
application is the fact that the mechanism is still 
functional, even with the loss of both resolvers. Step 
counting or optical performance data may be used to 
determine load position.   
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Figure 2 – 
Reliability Block Diagram 

 
5.2 Reliability Analysis of Each Component:  
The methodologies of the reliability of the components 
are presented in the 5.3.1 of this paper.  The detail 
summaries are shown in Appendix A herein. This 
methodology uses a combination of estimated L2 life 
analysis, combined with classical Weibull reliability 



 

statistical analysis.   We must first determine the L2 of 
the Mechanical and Electrical components of the 
actuator.  Note: Avior uses L2 for most space flight 
hardware analysis, although mathematically, you will 
achieve the similar reliability figures for Characteristic 
Life and MTBF if you use L10 values.   
 
5.2.1 Gears and Bearings: 
Structural bending fatigue analysis is conducted on the 
gears, per AGMA 2001.  The analysis is conducted to 
determine how many cycles and hours of operation at 
the mean torque and velocities described in section 3 
herein may be achieved.  We calculate the L2 life each 
of the mechanical gearing elements in the gearbox, 
using the AGMA equations. This calculated value 
tabulated in the Appendix A table.  The authors 
conservatively use one million hours of L2 life for each 
module if the calculated value is greater than one 
million hours.   
 
Bearings are similarly calculated for a factored L2 life 
using classical tools and software.  In the right angle 
gearbox, the bearings see thrust, tangential and radial 
loads, due to the bevel gear mesh.  If there are pure-
torque modules in the actuator, conservative estimates 
of radial loads are provided, due to imperfect gear 
meshing and load sharing in the planetary gearboxes.  
Typically, 10 to 50 Newtons of radial force at the 
extreme of the gear mesh is assumed for the supporting 
bearing loads.   Planet gear bearings see radial loads 
through the transmitted torque at each stage of gearing.  
 
5.2.3 Brancato Method of Motor Winding Life:  
Winding life estimates are analyzed using methods 
described in the Brancato Method, Ref. [3].  Avior’s 
Class H220 Insulation system is rated at 20,000 hours 
minimum regression life at +220º C.  The percentage of 
Life at a conservatively estimated Hot Spot 
Temperature of +120º C is as follows: 
 

Lw =100 ⋅2
TR−THS _M

10 ……………..(5) 
 

Where,  
• LW= Percentage of Life (To Be Calculated) 
• TR = Rated Insulation System (+220º C) 
• THS_M = Motor Winding Hot-Spot Temperature 

(+120º C) 
 
This equates to a lifetime of 102,400 percent greater 
than the minimum regression rating of 20,000 hours.  
This translates to 2.05 E+07 Hours of life for the 
winding insulation system.  In this application, Avior 
used an attenuation factor of 0.1 or 2.05 E+06 hours, for 
motor and sensor windings used in Geosynchronous and 
Deep-Space (high radiation) applications. In the next 
section, we will introduce a more appropriate de-rating 
methodology. When exposed to gamma ray and 

ultraviolet radiation, there are insulation aging 
degradations that are similar in affect to thermal 
radiation aging. The following section introduces 
alternate methods for dealing with the effect of ionizing 
radiation aging of electrical components. 
 
5.2.4 Radiation De-rating of Winding Assemblies 
As denoted above, radiation has similar effects electrical 
components that thermal radiation. Two methods based 
on similar principles were developed to handle the 
effects of ionizing radiation aging. The first method (!  ) 
accounts for both the amount of radiation absorbed and 
the rate at which the radiation is absorbed. The second 
(γ) incorporates the amount of radiation absorbed. 
 
The first method is to calculate an effective temperature 
from the incident radiation and ambient temperature, 
with the components approximated as a black body. 
Thermal radiation is taken into account with Ta 
 

!"## = !%4 + (**4    ……………….(6) 
Where, 

• Ta = ambient or operating temperature (K) T 
• !   = incident space radiation / σB (space radiation 

is about 7 W/m2) 
• σΒ = Stefan-Boltzmann constant 5.67E-08 
• !   = Harrington Psi Life Function (proposed), de-

rates electrical and insulation components 
 

!(#) = &*#(  	  …………..…… (7) 
•  
• δ = Total ionizing dose of space radiation during 

the mission (rad) 
• a = proposed constant, for Teflon insulation 

applications, a = 1.989 
• b = proposed constant, for Teflon insulation 

applications, b = 0.178 
 
The constant in Eq. 7 arises from the success of the 
chosen insulation system. The equation is used to add an 
additional margin of safety to the degradation of 
electrical components. Introducing ε the exposure ratio, 
where: 
 

! = #$
#%

  …………………………(8) 
 

• Lo = Electrical Operating Time in Hours 
• LM = Mission Life in Hours 

 
Finally, combing the results into the Brancato Method: 
	  

!" = 100 ∗ ((*2
+,-+.//0

10 10 + 1 − ( *2
3,-3.//4

10 )   (9) 
 

Where, 
• Lw and TR can be found following Eqn. 5 



 

 
While this method is robust it requires a bit of 
calculation, instead an exponential decay function that 
provides a de-rating factor is far simpler. An 
exponential function was chosen based on information 
about the change in physical and electrical properties of 
materials exposed to radiation in Ref [7]. Which denotes 
a decrease in bulk resistivity, a critically property of 
insulation systems, is an exponential decay relationship 
to the increase in radiation dose. The de-rating factor 
can be calculated by using Eq. 10 
 

! = 	 $-& '  ……………………(10) 
  
Where, 

• γ = Harrington Gamma Life Function (proposed), 
de-rates insulation life due to radiation dose  

• δ = Total ionizing dose of space radiation during 
the mission (rads) 

• ρ = lifetime constant, 4342944 for Teflon, results 
in .01 attenuation at the ‘threshold’ of radiation 
damage 

 
Eq. 10 de-rates the averaged Brancato life as seen in Eq. 
9, but instead Teff is replaced by Ta and Tb. See 
Appendix D for the generalized form.  
 
The first method (!  ) presented is robust and extremely 
conservative compared to method two (γ) up to 1.5E+07 
rads, at which point it is less conservative. The second 
method is simple to calculate. Both methods were 
designed to derate electrical component life to ~1% at 
the threshold of radiation-induced degradation.  
 
5.3 Reliability Analysis Toolkit: 
Using the on-line tools of the Reliability Analysis 
Toolkit, Ref. [2], we are able to predict the reliability 
failure rate of the actuator.  The methods used in this 
approach are derived from the NSWC Handbook of 
Reliability Prediction Procedures for Mechanical 
Equipment.  The online tools, using the equations 
described in 5.3.2 applicable Weibull distribution 
functions for different components.   
 
5.3.1 Reliability Equations:   
Using the L2 to MTBF Conversion, the equations 
represent a three-parameter Weibull distribution, with δ 
shown in the equations; however, for purposes of this 
tool this parameter (sometimes called "failure free life") 
is assumed to be zero, and eliminated from these 
equations. Note, the variables and symbols used in this 
section are consistent with those used in Ref. [2].   
 
 
Reliability Function R(t): 

R(t) = e
−
t
n
⎛

⎝
⎜
⎞

⎠
⎟
β

………………… (11) 

   
Probability Density Function f(t): 

f t( ) = β(t)
β−1

ηβ
e
−
t
η

⎛

⎝
⎜
⎞

⎠
⎟
β

…………..(12) 

     
h(t), instantaneous failure rate: 
 

h(t) = f (t)
R(t)

 ……………..……(13) 

    
The average failure rate is calculated using the Eq. 14: 
 

λAverage =
1− R(T )
0
T R(t)dt∫

………….(14) 

 
System Input Parameters:  

1. Shape parameter (β): Weibull shape 
“Beta” factors.  From Ref. [2]. Usages of 
Typical or High End factors are provided.  A 
Beta factor of 1.2 is used for windings, 1.3 
for Ball Bearings and 2.0 for Gearboxes.  
Higher complexity assemblies utilize higher 
β factors.  
 
2. Characteristic Life (η) is the 63.2% failure 
point for a mechanical system. The 
Characteristic Life is determined by the L2 
life and the β factor.   For instance, for a β of 
1.3, as for a bearing, the Characteristic Life 
is about 20x the L2 life. For a β factor of 2.0, 
the multiplication factor is about 7x the L2 
life. η can be calculated exactly by using Eq. 
15.  

 ! = #$ -&' 1 − $
*++

,* -
  ….(15) 

    
3. Maintenance interval for item renewal (T):    
No maintenance of this product is required or 
assumed.  A value of 100 years is used in the 
on-line tool equations.  

									
5.3.2 MTBF with the Reliability Toolkit: 
The on-line Reliability Toolkit was used to generate the 
MTBF, from the β function and the L2 predicted life. 
The lifetime estimations of the bearings and gears are 
based on conservative de-ratings of fatigue and wear-
out considerations, with margin, the failure rate of these 
estimations will be proportional to the required life over 
the predicted life. This method has been used in 
reliability analysis presented to, and accepted by many 
other programs and subject matter experts in the 
industry. The justification for this analysis methodology 
is the additional manufacturing precision, workmanship 
testing and quality inspections that take place for space 



 

flight hardware to eliminate infant mortality and other 
workmanship issues that affect commercial hardware.  
 
 
 
 
 
MTBF can be calculated using Eq. 16 
 

!"#$ =
&
' (

1
' ,

+
&

,

1 − .-
0
1

2  

………………(16) 
 
where, 

• Γ(a,x) is the incomplete gamma function 
Equation 11 can be ‘altered’ by setting MTBF = T. By 
doing so, a ‘No Maintenance’ interval is achieved i.e. 
the part on average would fail at the maintenance 
interval. See Appendix C for the method and code. 
 
5.3.3 Redundancy Factor for Windings:  
Since there is selectable redundancy for the motor and 
resolver windings, we may use the Redundancy Factor 
described in the Reliability Toolkit. We use the 
Effective Failure Rate on One Standby Offline Unit 
with One Active On-line Unit Required for Success 
(without repair), See Eq. 20. 
 
5.4 Reliability Number:  
We essentially have two separate life analyses to 
consider.   The mechanical loaded-life (tM) for the 
application is analyzed for 318 hours of operation.  The 
windings and the electrical insulation system are 
exposed to radiation the entire time in orbit, so 
regardless of powered-on time we assume the time on 
orbit degrades the insulation system.  For a five-year 
orbital mission for a high-radiation, geosynchronous 
application, we have an electrical life requirement (tE) 
of 44,000 hours of operation and 2E+04 Rads Total 
Ionizing Dose (TID) was used for total radiation during 
mission life.   Refer to Appendix A for a table of 
analysis parameters.  
 
To calculate the Mechanical Reliability for the 
operational profile from the MTBF, Eq. 17 is used: 
 

RtM = e
−tM

MTBFM

⎡

⎣
⎢

⎤

⎦
⎥

………………(17) 
 

Where,  
• RtM = Mechanical Reliability  
• tM = Time of loaded operation, in Hours (318) 
• MTBFM = Mechanical Mean Time Between 

Failures (1.20E+05) 
 
This results in an RtM = 0.99736 

 
Similarly, the Electrical Reliability is calculated by: 
 

RtE = e
−tE

MTBFE

⎡

⎣
⎢

⎤

⎦
⎥

…………….(18) 
 
 

Where,  
• RtE = Electrical Reliability  
• tE = Time of exposure, in Hours (44,000)  
• MTBFE = Electrical Mean Time Between 

Failures using (8.95E+12) calculated using γ 
de-rated Averaged Brancato method. 

 
Which results in an RtE =0.99999 
 
 
 
And the overall reliability (RO) is calculated by: 
 

RO = RM ⋅RE ………………...(19) 
 
Therefore, the overall reliability Ro = 0.99736 is 
achieved.  
 
The MTBF for n redundant units, 1 spare with no repair 
interval: 
 

!"#$% = !"#$*(*(* + 1) ……...(20) 
 

Where, 
• n = number of active units 
• P the probability that the spare will work 

 
The probability of the spare working can be treated as 
that units’ reliability. Using these equations for both 
cases of the electrical components results in Ro = 
.99736 for the !   factored electrical decay. See 
Appendices A and B for more information on reliability 
values. If we needed to increase the resultant overall 
reliability, we would address the two lowest MTBF 
components.  In this case, the Mid-Speed Carrier 
Bearings that see the radial and thrust loads from the 
bevel mesh and the low-speed planetary module are the 
reliability-driving components.  Possible methods to 
increase reliability in these components is to increase 
the gearbox and bearing size, or possibly change 
materials to increase the L2 ratings.  
 
6. QUALIFICATION AND LIFE TESTING 

The environmental qualification and life endurance tests 
were required for the subject actuator.  After vibration 
testing and thermal cycling, a life test was conducted. 
Of particular concern was the number of cycles required 
at the high-speed motor.   As shown in Fig. 3, the 



actuator is coupled to the simulated load inertia through 
a torque transducer and bearing support system.   The 
position output of the resolver was processed and 
recorded to a data recorder to assure no missed steps or 
transients were observed in the testing.   The life test 
was conducted at room temperature as well as the high 
and low temperature extremes.   All qualification tests 
were successful, and the actuator is integrated into the 
payload, awaiting launch.  

Figure 3 
 Life Test Set-Up with 0.5 kgm2 Load Inertia 

Figure 4 
Random Vibration Qualification Test 

7. CONCLUSION

Requirements for torque margin may have structural 
and endurance implications for transmitted torque 
through the mechanism that must be considered.  Non-
current limited applications may also have significant 
torque consequences at extreme conditions that are 
often not analysed.    The paper also details a 
methodology for calculating reliability using approved 

analysis techniques and methodologies. We also 
introduce two types of analysis for de-rating life 
estimates for motor insulation systems, due to insulation 
aging effects due to prolonged exposure to radiation.   

The subject actuator has successfully completed all 
qualification testing and the instrument is fully 
integrated into the system, and is awaiting delivery.  
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Appendix A – MTBF and Reliability  Table - Mechanical 
A B C D E F G 

Subsystem 
Module or 
Component 

Beta 
(Weibull 

Shape 
Parameter) 

L2 Life 
(Hours) 

Characteristic 
Life (Hours) 

MTBF 
(Hours) 

Average 
Failure 

Rate 
(Hours) 

Reliability 

N/A β See 5.2 η Ref. [2] λ Eq. 5 
Motor Rotor 

Bearing 1.3 4.50E+05 9.05E+06 9.57E+06 1.05E-07 0.99997 

High Speed 
Planetary Module 2 1.00E+06 7.04E+06 7.79E+06 1.28E-07 0.99996 

High Speed Planet 
Gear Bearings 1.3 1.00E+05 2.01E+06 2.13E+06 4.70E-07 0.99985 

High Speed 
Carrier Bearings 1.3 5.27E+05 1.06E+07 1.12E+07 8.93E-08 0.99997 

Mid Speed 
Planetary Module 2 1.00E+06 7.07E+06 7.79E+06 1.28E-07 0.99996 

Mid Speed Planet 
Gear Bearings 1.3 8.75E+05 1.76E+07 1.86E+07 5.38E-08 0.99998 

Mid Speed Carrier 
Bearing 1.3 2.94E+04 5.91E+06 6.25E+05 1.60E-06 0.99949 

Right Angle Bevel 
Gears 2 1.00E+06 7.04E+06 7.79E+06 1.28E-07 0.99996 

Right Angle 
Carrier Bearing 1.3 3.17E+07 6.38E+08 6.74E+08 1.48E-09 0.99999 

Right Angle 
Support Bearing 1.3 5.40E+06 1.09E+08 1.15E+08 8.71E-09 0.99999 

Low Speed 
Planetary Gearing 2 2.50E+04 1.76E+05 1.95E+05 5.14E-06 0.99837 

Low Speed Planet 
Gear Bearings 1.3 1.03E+05 2.07E+06 2.19E+06 4.57E-07 0.99985 

Low Speed Carrier 
Bearings 1.3 2.34E+06 4.71E+07 4.97E+07 2.01E-08 0.99999 

   Total 1.20E+05 8.33E-06 0.99736 
  

Appendix B – MTBF and Reliability Table - Electrical 
A B C D E G H I 

Subsystem Module 
or Component 

Beta 
(Weibull 

Shape 
Parameter) 

L2 Life 
(Hours) 

Characteristic 
Life (Hours) 

MTBF 
(Hours) 

Reliability 
 

Ro Redundant 
Ro 

.1Avior standard* 
at te=44000 1.2 2048000 5.29E+07 2.76E+07 0.99841 0.99577 0.99656 

        
.1 Averaged 
Brancato at 
te=44000 

1.2 2.60E+09 2.69E+10 1.40E+10 0.99999 0.99736 0.99736 

        
ψ at te=44000 1.2 1.47E+11 3.80E+12 1.98E+12 0.99999 0.99736 0.99736 

        
γ Averaged 
Brancato at 
te=44000 

1.2 6.63E+11 1.13E+13 8.95E+12 0.99999 0.99736 0.99736 

Calculations of reliability and MTBF include both the On Axis Resolver and Motor Windings 
 
*The Avior “old” standard is the Brancato L2 life at 120˚C multiplied by .1 
The averaged Brancato method can be found in Eq. 9 and in Appendix D 
A value of -30˚C was used for the cold or non-powered state of electrical components 
A value of +120˚C was used for the hotspot temperature of electrical components 
 



 

 
Appendix C 
 
 
The following code was written in Anaconda Spyder to calculate η, MTBF, λ, and no maintenance interval (T) 
# denotes code comment 
 
from scipy.special import gammaincc, gamma 
from math import * 
from math import exp as e 
 
B = β     #beta shape parameter 
L2 =L2    #L2 life 
n = L2*(-log(.98))**(-1/B) #η, characteristic life for L2 
le = 5*365*24   #mission life for electrical components (Hours) 
lm = 318   #usage life requirement for  
T = 50     #initial guess in hours of no maintenance interval  
R = e(-(T/n)**B)   #reliability function 
MTBF = (n/B*gamma(1/B)*gammainc(1/B,(T/n)**B))/(1-R) #see (◊) 
err = abs(T-MTBF)/MTBF*100  #percent error 
ep = .1     #final percent error 
 
while err>ep:   # subroutine solves T for conditions stated after Eq. 11 by simply convergence 
    T = MTBF   # Iterated map on T 
    R = e(-(T/n)**B) 
    MTBF = (n/B*gamma(1/B)*gammainc(1/B,(T/n)**B))/(1-R) 
    err = abs(T-MTBF)/MTBF*100 
              
print(n,MTBF,1/MTBF,e (-lm/MTBF)) #reports results η, ΜΤΒF, λ, and reliability Rn 
print(T/365/24,"Years")   #no maintenance life in years 
  
◊scipy gammainc is normalized, so it has to be multiplied by gamma 
 
ξ(T) is a non-linear iterated map in 1 dimension. T is the iterated value and β the driving constant. 
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Additionally, fixed point iterations of the map exist between, 
0 < β and  ~β ≤ 2.883 at β > 2.883 the map undergoes period doubling and the limit cycle iterations of the map become 
a period 2 orbit. Solutions are around the same order as η. Choosing η as an initial guess provides faster convergence 
by about 1 iteration. Below are several graph of iteration for two values of β. For β=1.2 the solution converges within 
.1% in 3 iterations and for β=2 the solution converges to within .1% in 12 iterations. 
 

 
For any additional question about the convergence of ξ, please contact the authors. 
 



 

Appendix D 

 
Graph of  ψ implemented Life decay, Eq. 9 

 
Graph of γ implemented Life decay, Eq. 10 

 
Both Eq. 9 and 10 together 
 
Averaged Broncato Equation (Generalized Equation 9),  

!" = 100* '(*2
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Where,  
!"

"

= 1 
 

• Ti = some temperature 
• εi =percent exposure to Ti 


