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Abstract 

MIL-HDBK-217 and similar reliability calculation methodologies inadequately assess the reliability of complex 
electro-mechanical components and mechanisms.   This paper utilizes accepted reliability methodology 
techniques to achieve realistic and technically justifiable approaches for MTBF and reliability ratings.   Additionally, 
this paper will address the historically overlooked effects of radiation on the accelerated degradation of insulation 
systems, such as those used in motors and other wound components.  

 
1. Introduction 

The challenging overall system requirements for aerospace mechanisms and gearboxes have led to several 
innovative and unique solutions for the application.  One of the most demanding of system requirements is the 
reliability and number of steps.  Even when the load friction is minimal, there is considerable transmitted torque 
through the gearbox to accelerate the load inertia.  We will assess the methodologies used in determination of 
transmitted torques, as well as several other key requirements.  
 

2. Analysis of Transmitted Torques 
 
2.2 Calculation of Load Acceleration Torques 
An often-overlooked implication of high torque margin in driving inertial loads is the acceleration torques at each 
step of the stepper motor.  These torque pulses can be significant and must be considered in the mechanical 
structural and life analysis.  For an example application, assume the load inertia is coupled directly to the output 
shaft, supported by a separate bearing system.  Also assuming the load friction is extremely low, and the driven 
load inertia is relatively high, each step of the stepper motor will accelerate the load and this will translate a reaction 
torque throughout the actuator.  If the motor current is limited to maintain a maximum holding output torque this 
translates to a torque at low pulse rate (TPPS-0) of at the motor.   Using the torque at low pulse rate for these 
calculations will provide the mean acceleration and torque during each step.  The Peak Torque and acceleration 
will be 41% higher than the mean calculated values.  
 
For applications that do not implement current limiting, nominal and maximum motor torque calculations should 
be analyzed. That is, nominal voltage, resistance and temperature for the nominal case, and minimum temperature 
and resistance as well as maximum torque constant and voltage for the maximum case.   The engineer needs to 
make sure that they have structural and endurance margin at maximum conditions, but it is also of value to assess 
the nominal conditions to gage how conservative the analysis is.  Since torque margin requirements are calculated 
at the minimum conditional values, the maximum conditions may result in surprising results.  
 
The mean acceleration at the load (αL) is calculated in Eq. 1.  The mathematical proof of this equation is available 
by contacting the authors.   
 

………..(1) 

Where: (Application Values) 
• αL = Mean Acceleration of the Load 

_______________________________ 
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• TPPS-0 = Torque at Low Pulse Rate at Motor 
• FM = Detent Plus Friction at the Motor 
• N= Gear Ratio 
• FL = Load Friction 
• JL = Load Inertia 
• JM = Motor Rotor Inertia 
• ηG = Gearbox Efficiency  

 
The Torque to Accelerate the Load (TαL) is calculated by Eq. 2: 
 

………………….(2) 
 

This torque is actually transmitted through the gearbox at every pulse of the system. As a note, since the gearbox 
efficiency attenuates the acceleration at the output, it is most conservative to use 100% gearbox efficiency.   
 

2.3 Calculation of Loaded Time and Mean Loaded Velocity 
Now that we have determined the peak-transmitted torque to the load, we must determine the time the unit is 
under load.   Stepper motors do not transmit torque between step pulses when the shaft is settled. As long as the 
inertia factor is reasonable (under 3.0) the overshoot and stabilization torque are also insignificant.   Therefore, 
we are primarily interested in the time it takes to accelerate the load at each pulse (tαL). Which is estimated in Eq. 
3.  

…………………(3) 

Where: (Application Values) 
• tαL = Time to Accelerate Load  
• ΔΘL = Step Size at Load  
• αL = Acceleration at Load 
• τe = Motor Electrical Time Constant  

 
This results in a time to accelerate the load at each pulse of in a period of seconds.  Given the life requirement of 
a number of steps a Loaded-Lifetime requirement of can be calculated.  There are several offsetting secondary 
and tertiary components that affect the actual load characteristics and step kinematics, however, this analysis is 
considered conservative and appropriate.  System drive electronics, internal damping characteristics as well as 
backlash will have minor effects on the step kinematics.  These system variables can be difficult to predict or 
quantify, and their affects are much less significant compared to the primary variables defined in Eqs. 1-3.   
 
Now that the torque and time components are established, we must determine the mean velocity when the 
mechanical energy is transferred. This calculation is presented in Eq. 4.  

…………..……(4) 

Where: (Application Values) 
• ωL_Loaded = Mean Loaded Velocity  

 
This analysis results in a Mean Loaded Velocity in Radians per second.   The analyzed load acceleration torques 
(TαL), Mean Loaded Velocities, and Loaded Lifetime must be used in the gearbox and bearing endurance and 
analysis.   The most important factor that we are communicating here is that the torque and velocity that is 
transmitted through stepper motor actuators are typically significantly higher than the load friction and step-rate 
velocity requirements.  Increasing torque motorization margin will necessarily increase the torque transmitted 
through the gearbox, regardless of the magnitude of the load frictional components.    

TαL = JL ⋅αL

tαL =
2 ⋅ ΔΘL

αL

+τ e

ωL _Loaded =
ΔΘL

tαL
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Another key take-away, the Loaded Lifetime can be orders of magnitude less than the operational time, since 
stepper motor actuators are not transmitting torque during idle and settled times between steps.   Additionally, if 
you run through the numbers, you will see that lower gear ratios will reduce TαL at the actuator output.  Doing this 
will increase your inertia factor and increase the probability of unstable step performance, as described in Ref. [1]. 
 

3. Reliability Analysis 
There are many statistical approaches to calculate the failure rates of components and systems. Many of which 
do not adequately assess the failure rates of electro-mechanical systems such as a mechanical. It is also 
impractical to manufacture a statistically significant number of units to determine failure rates and probabilities.   
The authors believe the approach presented herein is much more appropriate and statistically valid for 
mechanisms and components manufactured for the space industry.  
 

3.1 Reliability Block Diagram 
The example in Fig. 1 breaks down the components of an actuator in a Reliability Block Diagram.   The motor may 
be driven through either the primary or redundant motor winding.  Single-string gearbox components are typical 
for the industry, as differential gearing adds significant cost, mass and complexity.   The output position may be 
measured by either the primary or redundant sensor windings.  Reliability Block Diagrams may seem trivial, but it 
provides a graphic representation of the system configuration and aides in the determination of potential failure 
modes and their effects.  Also of note in the example that the mechanism is still functional even with the loss of 
both resolvers. Step counting or optical performance data may be used to determine load position.   

 
Figure 1 – 

Reliability Block Diagram 
 

3.2 Reliability Analysis of Each Component 
The methodologies of the reliability of the components are presented in the 3.3.1 of this paper.  The detail 
summaries are shown in Appendix A herein. This methodology uses a combination of estimated L2 life analysis, 
combined with classical Weibull reliability statistical analysis.   We must first determine the L2 of the Mechanical 
and Electrical components of the actuator.  Note: Avior uses L2 for most space flight hardware analysis, although 
mathematically, you will achieve the similar reliability figures for Characteristic Life and MTBF if you use L10 values.   
 

3.2.1 Gears and Bearings 
Structural bending fatigue analysis is conducted on all gears, per AGMA 2001.  The analysis is conducted to 
determine how many cycles and hours of operation at the mean torque and velocities described in section 3 herein 
may be achieved.  We calculate the L2 life each of the mechanical gearing elements in the gearbox, using the 
AGMA equations. This calculated value tabulated in the Appendix A table.  The authors conservatively use one 
million hours of L2 life for each module if the calculated value is greater than one million hours.   
 
Bearings are similarly calculated for a factored L2 life using classical tools and software.  In the right-angle gearbox, 
the bearings see thrust, tangential, and radial loads due to the bevel gear mesh.  If there are pure-torque modules 
in the actuator, conservative estimates of radial loads are provided, due to imperfect gear meshing and load 
sharing in the planetary gearboxes.  Typically, 10 to 50 Newtons of radial force at the extreme of the gear mesh is 

Primary 
Motor 

Winding

Redundant 
Motor 

Winding

Motor 
Rotor 

Bearings

High 
Speed 

Planetary

Mid 
Speed 

Planetary
Right Angle 

Gearbox Module 

Low Speed 
Planetary
Module

Primary 
OnAxis 

Resolver

Redundant 
OnAxis 

Resolver

Output 
Shaft



 

Proceedings of the 44rd Aerospace Mechanisms Symposium, NASA Ames Research Center, May 16-18, 2018 
 

4 

assumed for the supporting bearing loads.   Planet gear bearings see radial loads through the transmitted torque 
at each stage of gearing.  
 
3.2.3 Brancato Method of Motor Winding Life:  
Winding life estimates are analyzed using methods described in the Brancato Method, Ref. [3].  Avior’s Class 
H220 Insulation system is rated at 20,000 hours minimum regression life at +220º C.  The Percentage of Life at a 
conservatively estimated Hot Spot Temperature of +120º C is as follows: 

……………..(5) 
Where,  

• LW= Percentage of Life (To Be Calculated) 
• TR = Rated Insulation System (+220º C) 
• THS_M = Motor Winding Hot-Spot Temperature (+120º C) 

 

This equates to a lifetime of 102,400 percent greater than a typical minimum regression rating of 20,000 hours.  
This translates to 2.05 E+07 Hours of life for the winding insulation system.  In this application, Avior generally 
uses an attenuation factor of for motor and sensor windings used in Geosynchronous and Deep-Space (high 
radiation) applications. In the next section, we will introduce a more appropriate de-rating strategy. When exposed 
to gamma ray and ultraviolet radiation, there are insulation aging degradations that are similar in effects to thermal 
radiation aging. Due to ultraviolet radiation having low penetration it can be neglected. The following section 
introduces alternate methods for dealing with the effect of ionizing radiation aging of electrical components. 
 
3.2.4 Radiation De-rating of Winding Assemblies 
As denoted above, and for the purpose of derating, it is assumed that geosynchronous radiation similarly degrades 
electrical components as thermal radiation. Two methods based on similar principles were developed to handle 
the effects of ionizing radiation aging. The first method (𝜓) accounts for both the amount of radiation absorbed and 
the rate at which the radiation is absorbed. The second (γ) incorporates the amount of radiation absorbed. 
 
The first method is to calculate an effective temperature from the incident radiation and ambient temperature, with 
the components approximated as a black body. Thermal radiation is taken into account with Ta. 

𝑇#$$ = &𝑇'( + 𝜓 ∗ 𝜁
,  ……………….(6) 

Where, 
• Ta = ambient or operating temperature (K) T 
• 𝜁 = incident space radiation / σB (space radiation is about 7 W/m2) 
• σΒ = Stefan-Boltzmann constant 5.67E-08 
• 𝜓 = Harrington Psi Life Function (proposed), de-rates electrical and insulation components 

 
𝜓(𝛿) = 𝑎 ∗ 𝛿1	…………..…… (7) 

Where, 
• δ = Total ionizing dose of space radiation during the mission (rad) 
• a = proposed constant, for Teflon insulation applications, a = 1.176 
• b = proposed constant, for Teflon insulation applications, b = 0.144 

 
The constant in Eq. 7 arises from the success of the chosen insulation system. The equation is used to add an 
additional margin of safety to the degradation of electrical components. Introducing ε the exposure ratio, where: 

𝜀 = 45
46

…………………………(8) 
 

• Lo = Electrical Operating Time in Hours 
• LM = Mission Life in Hours 

 
Finally, combing the results into the Brancato Method: 
 

Lw =100 ⋅2
TR−THS _M

10
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𝐿8 = 100 ∗ (𝜀 ∗ 2
<=><?@@5

AB 10 + (1 − 𝜀) ∗ 2
D=>D?@@E

AB ) (9) 
Where, 

• Lw and TR can be found following Eqn. 5 
 

One alternative to energy methods for calculating insulation life due to radiation is to assume that the insulation 
follows the reliability equation. Instead, we propose time be replaced with total ionizing dose (rads) 

𝑅 = 𝑒H(
I
J)
A.L

……………………(10) 
 Where, 

• δ = Total ionizing dose of space radiation during the mission (rad), assumed to be 10000 rads for 5-year 
mission at geosynchronous orbit 

• η = 4.25E7 rads, proposed constant for insulation reliability, see appendix C 
 
3.3 Reliability Analysis Toolkit: 
Using the on-line tools of the Reliability Analysis Toolkit, Ref. [2], we are able to predict the reliability failure rate 
of an actuator.  The methods used in this approach are derived from the NSWC Handbook of Reliability Prediction 
Procedures for Mechanical Equipment.  The online tools, using the equations described in 3.3.2 applicable Weibull 
distribution functions for different components.   
 
3.3.1 Reliability Equations:   
Using the L2 to MTBF Conversion, the equations represent a three-parameter Weibull distribution, with δ shown 
in the equations; however, for purposes of this tool this parameter (sometimes called "failure free life") is assumed 
to be zero, and eliminated from these equations. Note, the variables and symbols used in this section are 
consistent with those used in Ref. [2].   
 

Reliability Function R(t):   ………………… (11) 
   

Probability Density Function f(t): …………..(12) 

     

h(t), instantaneous failure rate:   ……………..……(13) 

    
The average failure rate is calculated using the Eq. 14: 
 

………….(14) 

System Input Parameters:  
1. Shape parameter (β): Weibull shape “Beta” factors.  From Ref. [2]. Usages of Typical or High-End 
factors are provided.  A Beta factor of 1.2 is used for windings, 1.3 for Ball Bearings and 2.0 for 
Gearboxes.  Higher complexity assemblies utilize higher β factors.  
 
2. Characteristic Life (η) is the 63.2% failure point for a mechanical system. The Characteristic Life is 
determined by the L2 life and the β factor.   For instance, for a β of 1.3, as for a bearing, the Characteristic 
Life is about 20x the L2 life. For a β factor of 2.0, the multiplication factor is about 7x the L2 life. η can be 
calculated exactly by using Eq. 15.  
 

R(t) = e
−
t
n
⎛

⎝
⎜
⎞

⎠
⎟
β

f t( ) = β(t)
β−1

ηβ
e
−
t
η

⎛

⎝
⎜
⎞

⎠
⎟
β

h(t) = f (t)
R(t)

λAverage =
1− R(T )
0
T R(t)dt∫
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𝜂 = 𝐿N O−𝑙𝑛 R1 −
N
STT
UV

HS
WX
….(15) 

    
3. Maintenance interval for item renewal (T):    No maintenance of this product is required or assumed.  
A value of 100 years is used in the on-line tool equations.  

         
3.3.2 MTBF with the Reliability Toolkit: 
The on-line Reliability Toolkit was used to generate a MTBF, from the β function and the L2 predicted life. The 
same equations used in the on-line tool are available in this paper. The lifetime estimations of the bearings and 
gears are based on conservative de-ratings of fatigue and wear-out considerations, with margin, the failure rate of 
these estimations will be proportional to the required life over the predicted life. This method has been used in 
reliability analysis presented to, and accepted by many other programs and subject matter experts in the industry. 
The justification for this analysis methodology is the additional manufacturing precision, workmanship testing and 
quality inspections that take place for space flight hardware to eliminate infant mortality and other workmanship 
issues that affect commercial hardware.  
 
MTBF can be calculated using Eq. 16 

										𝑀𝑇𝐵𝐹 =
J
\]^

A
\,R

<
JU
\
`

SH#
>R<JU

\ 		………………(16) 

where, γ(a,x) is the lower incomplete gamma function 
 
Equation 11 can be ‘altered’ by setting MTBF = T. By doing so, a ‘Maintenance Free’ interval is achieved i.e. the 
part on average would fail at the maintenance interval. The equation reduces to η/β*Γ(1/β) for ‘No Maintenance. 
See Appendix C for the method and code. 
 
3.3.3 Redundancy Factor for Windings:  
Since there is selectable redundancy for the motor and resolver windings, we may use the Redundancy Factor 
described in the Reliability Toolkit. We use the Effective Failure Rate on One Standby Offline Unit with One Active 
On-line Unit Required for Success (without repair), See Eq. 20. 
 
3.4 Reliability Number:  
We essentially have two separate life analyses to consider, the mechanical reliability and the electrical reliability.  
The windings and the electrical insulation system are exposed to radiation the entire time in orbit, so regardless 
of powered-on time we assume the time on orbit degrades the insulation system.  For a five-year orbital mission 
for a high-radiation, geosynchronous application, we have an electrical life requirement (tE) of 44,000 hours of 
operation and 2E+04 Rads Total Ionizing Dose (TID) of radiation during mission life.   Refer to Appendix A for a 
table of analysis parameters.  
 
To calculate the Mechanical Reliability for the operational profile from the MTBF, Eq. 17 is used: 
 

………………(17) 
Where,  

• RtM = Mechanical Reliability  
• tM = Time of loaded operation (Hours) 
• MTBFM = Mechanical Mean Time Between Failures (1.20E+05) 

 
This results in an RtM = 0.99736 
Similarly, the Electrical Reliability is calculated by:   
 

RtM = e
−tM

MTBFM

⎡

⎣
⎢

⎤

⎦
⎥
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…………….(18) 
Where,  

• RtE = Electrical Reliability  
• tE = Time of exposure, in Hours (44,000)  
• MTBFE = Electrical Mean Time Between Failures using (8.95E+12) calculated using γ de-rated Averaged 

Brancato method. 
 
Which results in an RtE =0.99999 
 
The insulation reliability is calculated in equation (19)  
 

𝑅a = 𝑒b
>I

6Dcde…………….…….(19) 
Where,  

• RtM = Insulation Reliability  
• δ = Total Ionizing Dose (10000 rads) 
• MTBF = Insulation Mean Time Between Failures (4E+7) 

Which results in an Ri =.99975 
 
And the overall reliability (RO) is calculated by:  
   

𝑅f = 𝑅g ∙ 𝑅i ∙ 𝑅a………………...(20) 
 
Therefore, the overall reliability Ro = 0.99701 is achieved.  
 
The MTBF for n redundant units, 1 spare with no repair interval: 
 

𝑀𝑇𝐵𝐹j = 𝑀𝑇𝐵𝐹 ∗ 𝑛 ∗ (𝑃 + 1)……...(21) 
Where, 

• n = number of active units 
• P the probability that the spare will work 

 
The probability of the spare working can be treated as that units’ reliability. Using these equations for both cases 
of the electrical components results in Ro = .99736 for the 𝜓 factored electrical decay. See Appendices A and B 
for more information on reliability values. If we needed to increase the resultant overall reliability, we would address 
the two lowest MTBF components.  In this case, the Mid-Speed Carrier Bearings that see the radial and thrust 
loads from the bevel mesh and the low-speed planetary module are the reliability-driving components.  Possible 
methods to increase reliability in these components is to increase the gearbox and bearing size, or possibly change 
materials to increase the L2 ratings.  

 
4. CONCLUSION 

Requirements for torque margin may have structural and endurance implications for transmitted torque through 
the mechanism that must be considered.  Non-current limited applications may also have significant torque 
consequences at extreme conditions that are often not analysed.    The paper also details a methodology for 
calculating reliability using approved analysis techniques and methodologies. We also introduce two types of 
analysis for de-rating life estimates for motor insulation systems, due to insulation aging effects due to prolonged 
exposure to radiation.   
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Appendix A – MTBF and Reliability  Table - Mechanical 

A B C D E F G 
Subsystem Module 

or Component 
Beta 

(Weibull 
Shape 

Parameter) 

L2 Life 
(Hours) 

Characteristic 
Life (Hours) 

MTBF 
(Hours) 

Average Failure 
Rate (Hours) 

Reliability 

N/A β See 5.2 η Ref. [2] λ Eq. 5 
Motor Rotor 

Bearing 1.3 4.50E+05 9.05E+06 9.57E+06 1.05E-07 0.99997 

High Speed 
Planetary Module 2 1.00E+06 7.04E+06 7.79E+06 1.28E-07 0.99996 

High Speed Planet 
Gear Bearings 1.3 1.00E+05 2.01E+06 2.13E+06 4.70E-07 0.99985 

High Speed Carrier 
Bearings 1.3 5.27E+05 1.06E+07 1.12E+07 8.93E-08 0.99997 

Mid Speed 
Planetary Module 2 1.00E+06 7.07E+06 7.79E+06 1.28E-07 0.99996 

Mid Speed Planet 
Gear Bearings 1.3 8.75E+05 1.76E+07 1.86E+07 5.38E-08 0.99998 

Mid Speed Carrier 
Bearing 1.3 2.94E+04 5.91E+06 6.25E+05 1.60E-06 0.99949 

Right Angle Bevel 
Gears 2 1.00E+06 7.04E+06 7.79E+06 1.28E-07 0.99996 

Right Angle Carrier 
Bearing 1.3 3.17E+07 6.38E+08 6.74E+08 1.48E-09 0.99999 

Right Angle 
Support Bearing 1.3 5.40E+06 1.09E+08 1.15E+08 8.71E-09 0.99999 

Low Speed 
Planetary Gearing 2 2.50E+04 1.76E+05 1.95E+05 5.14E-06 0.99837 

Low Speed Planet 
Gear Bearings 1.3 1.03E+05 2.07E+06 2.19E+06 4.57E-07 0.99985 

Low Speed Carrier 
Bearings 1.3 2.34E+06 4.71E+07 4.97E+07 2.01E-08 0.99999 

   Total 1.20E+05 8.33E-06 0.99736 
 
 
 
 
 

 

Appendix B – MTBF and Reliability Table - Electrical 
A B C D E G H I 

Subsystem Module 
or Component 

Beta 
(Weibull 
Shape 

Parameter) 

L2 Life 
(Hours) 

Characteristic 
Life (Hours) 

MTBF 
(Hours) 

Reliab
ility 

 

Ro Redundant 
Ro 

.1Avior standard* 
at te=44000 1.2 2048000 5.29E+07 2.76E+07 0.998

41 0.99577 0.99656 

        
.1 Averaged 
Brancato at 
te=44000 

1.2 2.60E+09 2.69E+10 1.40E+10 0.999
99 0.99736 0.99736 
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ψ at te=44000 1.2 1.47E+11 3.80E+12 1.98E+12 0.999
99 0.99736 0.99736 

        
γ Averaged 
Brancato at 
te=44000 

1.2 6.63E+11 1.13E+13 8.95E+12 0.999
99 0.99736 0.99736 

Calculations of reliability and MTBF include both the On Axis Resolver and Motor Windings 
*The Avior “old” standard is the Brancato L2 life at 120˚C multiplied by .1 
The averaged Brancato method can be found in Eq. 9 and in Appendix D 
A value of -30˚C was used for the cold or non-powered state of electrical components 
A value of +120˚C was used for the hotspot temperature of electrical components 
 
Appendix C 
The following code was written in Anaconda Spyder to calculate η, MTBF, λ, and no maintenance interval (T) 
# denotes code comment 
from scipy.special import gammaincc, gamma 
from math import * 
from math import exp as e 
B = β     #beta shape parameter 
L2 =L2    #L2 life 
n = L2*(-log(.98))**(-1/B) #η, characteristic life for L2 
le = 5*365*24   #mission life for electrical components (Hours) 
lm = 318   #usage life requirement for  
T = 50     #initial guess in hours of no maintenance interval  
R = e(-(T/n)**B)   #reliability function 
MTBF = (n/B*gamma(1/B)*gammainc(1/B,(T/n)**B))/(1-R) #see (à) 
err = abs(T-MTBF)/MTBF*100  #percent error 
ep = .1     #final percent error 
while err>ep:   # subroutine solves T for conditions stated after Eq. 11 by simply convergence 
    T = MTBF   # Iterated map on T 
    R = e(-(T/n)**B) 
    MTBF = (n/B*gamma(1/B)*gammainc(1/B,(T/n)**B))/(1-R) 
    err = abs(T-MTBF)/MTBF*100 
print(n,MTBF,1/MTBF,e (-lm/MTBF)) #reports results η, ΜΤΒF, λ, and reliability Rn 

print(T/365/24,"Years")   #no maintenance life in years  
 àscipy gammainc is normalized, so it has to be multiplied by gamma 
from scipy.special import gamma 
B = β     #beta shape parameter 
L2 =L2    #L2 life 
n = L2*(-log(.98))**(-1/B) #η, characteristic life for L2 
R = e(-(T/n)**B)   #reliability function 
MTBF = n/B*gamma(1/B) 
 
Appendix D 
 
Graph of  ψ implemented Life decay, implementing Eq. 9 
Averaged Broncato Equation (Generalized Equation 9),  
𝐿8 = 100 ∗l𝜀a ∗ 2

m=HmE
ST

a

 

Where,  
l𝜀a
a

= 1 

• Ti = some temperature 
• εi =percent exposure to Ti


